• Menu
  • Skip to right header navigation
  • Skip to main content
  • Skip to primary sidebar

DigiBanker

Bringing you cutting-edge new technologies and disruptive financial innovations.

  • Home
  • Pricing
  • Features
    • Overview Of Features
    • Search
    • Favorites
  • Share!
  • Log In
  • Home
  • Pricing
  • Features
    • Overview Of Features
    • Search
    • Favorites
  • Share!
  • Log In

New quantum states that are magnet-freee could support building topological quantum computers that are stable and less prone to the errors

April 25, 2025 //  by Finnovate

A new study published in Nature reports the discovery of over a dozen previously unseen quantum states in twisted molybdenum ditelluride, expanding the “quantum zoo” of exotic matter. Among them are states that could be used to create what is known, theoretically at the moment, as a topological quantum computer. Topological quantum computers will have unique quantum properties that should make them less prone to the errors that hinder quantum computers, which are currently built with superconducting materials. But superconducting materials are disrupted by magnets, which have until now been used in attempts to create the topological states needed for this (still unrealized) next generation of quantum computers. Lead author from Howard Family Professor of Nanoscience at Columbia, Xiaoyang Zhu’s zoo solves that problem: The states he and his team discovered can all be created without an external magnet, thanks to the special properties of a material called twisted molybdenum ditelluride. These states, including magnet-free fractional quantum Hall effects, could support non-Abelian anyons—key building blocks for more stable, topological quantum computers. The discoveries were made using a pump-probe spectroscopy technique that detects subtle shifts in quantum states with high sensitivity, revealing fractional charges and dynamic quantum behavior.

Read Article

Category: Members, Innovation Topics, Futurism

Previous Post: « Bilt Rewards platform enables students to earn rewards on their student housing payments and redeem their rewards toward student loan repayments
Next Post: OpenAI is planning a truly ‘open reasoning’ AI system with a ‘handoff’ feature that would enable it to make calls to the OpenAI API to access other, larger models for a substantial computational lift »

Copyright © 2025 Finnovate Research · All Rights Reserved · Privacy Policy
Finnovate Research · Knyvett House · Watermans Business Park · The Causeway Staines · TW18 3BA · United Kingdom · About · Contact Us · Tel: +44-20-3070-0188

We use cookies to provide the best website experience for you. If you continue to use this site we will assume that you are happy with it.OkayPrivacy policy