• Menu
  • Skip to right header navigation
  • Skip to main content
  • Skip to primary sidebar

DigiBanker

Bringing you cutting-edge new technologies and disruptive financial innovations.

  • Home
  • Pricing
  • Features
    • Overview Of Features
    • Search
    • Favorites
  • Share!
  • Log In
  • Home
  • Pricing
  • Features
    • Overview Of Features
    • Search
    • Favorites
  • Share!
  • Log In

New quantum framework for analysing higher-order topological data achieves linear scaling in signal dimension using quantum linear systems algorithms compatible with data’s native format, that enable manipulating multi-way signals with efficient data encoding

August 8, 2025 //  by Finnovate

A team of researchers led by Professor Kavan Modi from the Singapore University of Technology and Design (SUTD) has taken a conceptual leap into this complexity by developing a new quantum framework for analysing higher-order network data. Their work centres on a mathematical field called topological signal processing (TSP), which encodes more than connections between pairs of points but also among triplets, quadruplets, and beyond. Here, “signals” are information that lives on higher-dimensional shapes (triangles or tetrahedra) embedded in a network. The team introduced a quantum version of this framework, called Quantum Topological Signal Processing (QTSP). It is a mathematically rigorous method for manipulating multi-way signals using quantum linear systems algorithms. Unlike prior quantum approaches to topological data analysis, which often suffer from impractical scaling, the QTSP framework achieves linear scaling in signal dimension. It is an improvement that opens the door to efficient quantum algorithms for problems previously considered out of reach. The technical insight behind QTSP is in the structure of the data itself. Classical approaches typically require costly transformations to fit topological data into a form usable by quantum devices. However, in QTSP, the data’s native format is already compatible with quantum linear systems solvers, due to recent developments in quantum topological data analysis. This compatibility allows the team to circumvent a major bottleneck, efficient data encoding, while ensuring the algorithm remains mathematically grounded and modular. Still, loading data into quantum hardware and retrieving it without overwhelming the quantum advantage remains an unsolved challenge. Even with linear scaling, quantum speedups can be nullified by overheads in pre- and post-processing. The framework achieves linear scaling and has been demonstrated through a quantum extension of the classical HodgeRank algorithm, with potential applications in recommendation systems, neuroscience, physics and finance.

Read Article

Category: Innovation Topics, Futurism

Previous Post: « Embedded payments are seeing rising adoption in the parking sector through AI-recognition tech that lets customers just drive in and scan a QR code to enter their credit card information the first time they park, with automatic vehicle identification and charges applied on subsequent trips

Copyright © 2025 Finnovate Research · All Rights Reserved · Privacy Policy
Finnovate Research · Knyvett House · Watermans Business Park · The Causeway Staines · TW18 3BA · United Kingdom · About · Contact Us · Tel: +44-20-3070-0188

We use cookies to provide the best website experience for you. If you continue to use this site we will assume that you are happy with it.