Researchers from Chalmers University of Technology in Sweden, along with teams from Milan, Granada, and Tokyo, have developed a groundbreaking method for simulating certain types of error-corrected quantum computations. This is a major step forward in the race to build powerful, dependable quantum technology. Quantum computers have the potential to transform fields like medicine, energy, encryption, artificial intelligence, and logistics. However, they still face a critical obstacle: errors. Quantum systems are far more prone to errors and much harder to fix than traditional computers. Researchers often turn to classical computers to simulate the process, but simulating advanced quantum behavior is incredibly complex. The limited ability of quantum computers to correct errors stems from their fundamental building blocks, qubits, which have the potential for immense computational power but are highly sensitive to disturbances. To address this issue, error correction codes are used to distribute information across multiple subsystems, allowing errors to be detected and corrected without destroying the quantum information. The researchers developed an algorithm capable of simulating quantum computations using the Gottesman-Kitaev-Preskill (GKP) code, which makes quantum computers less sensitive to noise and disturbances. This new mathematical tool allows researchers to more reliably test and validate a quantum computer’s calculations, opening up entirely new ways of simulating quantum computations that have previously been unable to test.