• Menu
  • Skip to right header navigation
  • Skip to main content
  • Skip to primary sidebar

DigiBanker

Bringing you cutting-edge new technologies and disruptive financial innovations.

  • Home
  • Pricing
  • Features
    • Overview Of Features
    • Search
    • Favorites
  • Share!
  • Log In
  • Home
  • Pricing
  • Features
    • Overview Of Features
    • Search
    • Favorites
  • Share!
  • Log In

Neo4j’s serverless solution enables users of all skill levels to access graph analytics without the need for custom queries, ETL pipelines, or specialized graph expertise and can be used seamlessly with any data source

May 9, 2025 //  by Finnovate

Neo4j, has launched Neo4j Aura Graph Analytics, a new serverless offering that for the first time can be used seamlessly with any data source, and with Zero ETL (extract, load, transfer). The solution delivers the power of graph analytics to users of all skill levels, unlocking deeper intelligence and achieving 2X* greater insight precision and quality over traditional analytics. The new Neo4j offering makes graph analytics capabilities accessible to everyone and eliminates adoption barriers by removing the need for custom queries, ETL pipelines, or any need for specialized graph expertise – so that business decision-makers, data scientists, and other users can focus on outcomes, not overhead. Neo4j Aura Graph Analytics requires no infrastructure setup and no prior experience with graph technology or Cypher query language. Users seamlessly deploy and scale graph analytics workloads end-to-end, enabling them to collect, organize, analyze, and visualize data. The offering includes the industry’s largest selection of 65+ ready-to-use graph algorithms and is optimized for high-performance applications and parallel workflows. Users pay only for the processing power and storage they consume. Additional benefits and capabilities below are based on customer-reported outcomes that reflect real-world performance gains: 1) Up to 80% model accuracy, leading to 2X greater efficacy of insights that go beyond the limits of traditional analytics. 2) Insights achieved twice as fast as open-source alternatives with parallelized in-memory processing of graph algorithms 3) 75% less code, Zero ETL. 4) No administration overhead, and lower total cost of ownership. 

Read Article

 

Category: AI & Machine Economy, Innovation Topics

Previous Post: « Success of Pix and UPI is paving way for a three-stage framework for state-led fast payment systems that involves weighting pre-requisites, implementation and scaling and establishing engagement mechanisms and regulatory adjustments

Copyright © 2025 Finnovate Research · All Rights Reserved · Privacy Policy
Finnovate Research · Knyvett House · Watermans Business Park · The Causeway Staines · TW18 3BA · United Kingdom · About · Contact Us · Tel: +44-20-3070-0188

We use cookies to provide the best website experience for you. If you continue to use this site we will assume that you are happy with it.OkayPrivacy policy