• Menu
  • Skip to right header navigation
  • Skip to main content
  • Skip to primary sidebar

DigiBanker

Bringing you cutting-edge new technologies and disruptive financial innovations.

  • Home
  • Pricing
  • Features
    • Overview Of Features
    • Search
    • Favorites
  • Share!
  • Log In
  • Home
  • Pricing
  • Features
    • Overview Of Features
    • Search
    • Favorites
  • Share!
  • Log In

HiddenLayer enhances explainability of AI models using Model Genealogy and AI Bill of Materials (AIBOM), that reveal lineage and pedigree to track how they were trained, fine-tuned, and modified

April 24, 2025 //  by Finnovate

HiddenLayer released AISec Platform 2.0, the platform with the most context, intelligence, and data for securing AI systems across the entire development and deployment lifecycle. Tnew release includes Model Genealogy and AI Bill of Materials (AIBOM), expanding the platform’s observability and policy-driven threat management capabilities. With AISec Platform 2.0, HiddenLayer is establishing a new benchmark in AI security where rich context, actionable telemetry, and automation converge to enable continuous protection of AI assets from development to production. With AISec Platform 2.0, HiddenLayer empowers security teams to Accelerate model development, Gain full visibility, Automate model governance and enforcement and Deploy AI with confidence. AISec Platform 2.0 introduces: 1) Model Genealogy: Unveils the lineage and pedigree of AI models to track how they were trained, fine-tuned, and modified over time, enhancing explainability, compliance, and threat identification. 2) AI Bill of Materials (AIBOM): Automatically generated for every scanned model, AIBOM provides an auditable inventory of model components, datasets, and dependencies. Exported in an industry-standard format, it enables organizations to trace supply chain risk, enforce licensing policies, and meet regulatory compliance requirements. 3) Enhanced Threat Intelligence & Community Insights: Aggregates data from public sources like Hugging Face, enriched with expert analysis and community insights, to deliver actionable intelligence on emerging machine learning security risks. 4) Red Teaming & Telemetry Dashboards: Updated dashboards enable deeper runtime analysis and incident response across model environments, offering better visibility into prompt injection attempts, misuse patterns, and agentic behaviors.

Read Article

Category: Members, Essential Guidance

Previous Post: « TD Bank creates Consumer Index to track financial preparedness of Americans; 70% consider illness or an unwelcome visit to the Emergency Room as the most critical time to be financially prepared
Next Post: Revolut delivers first $1 Billion profit in 2024- customer base grew by 38% to 53m; Wealth boomed by 298% to $647m globally; targets 100 million daily active users across 100 countries »

Copyright © 2025 Finnovate Research · All Rights Reserved · Privacy Policy
Finnovate Research · Knyvett House · Watermans Business Park · The Causeway Staines · TW18 3BA · United Kingdom · About · Contact Us · Tel: +44-20-3070-0188

We use cookies to provide the best website experience for you. If you continue to use this site we will assume that you are happy with it.OkayPrivacy policy