• Menu
  • Skip to right header navigation
  • Skip to main content
  • Skip to primary sidebar

DigiBanker

Bringing you cutting-edge new technologies and disruptive financial innovations.

  • Home
  • Pricing
  • Features
    • Overview Of Features
    • Search
    • Favorites
  • Share!
  • Log In
  • Home
  • Pricing
  • Features
    • Overview Of Features
    • Search
    • Favorites
  • Share!
  • Log In

Gemini’s new foundation model runs locally on bi-arm robotic devices, without accessing a data network and enables rapid experimentation with dexterous manipulation and adaptability to new tasks through fine-tuning

June 26, 2025 //  by Finnovate

Google DeepMind introduced a vision language action (VLA) model that runs locally on robotic devices, without accessing a data network. The new Gemini Robotics On-Device robotics foundation model features general-purpose dexterity and fast task adaptation. “Since the model operates independent of a data network, it’s helpful for latency sensitive applications and ensures robustness in environments with intermittent or zero connectivity,” Google DeepMind Senior Director and Head of Robotics Carolina Parada said.  Building on the task generalization and dexterity capabilities of Gemini Robotics, which was introduced in March, Gemini Robotics On-Device is meant for bi-arm robots and is designed to enable rapid experimentation with dexterous manipulation and adaptability to new tasks through fine-tuning. The model follows natural language instructions and is dexterous enough to perform tasks like unzipping bags, folding clothes, zipping a lunchbox, drawing a card, pouring salad dressing and assembling products. It is also Google DeepMind’s first VLA model that is available for fine-tuning. “While many tasks will work out of the box, developers can also choose to adapt the model to achieve better performance for their applications,” Parada said in the post. “Our model quickly adapts to new tasks, with as few as 50 to 100 demonstrations — indicating how well this on-device model can generalize its foundational knowledge to new tasks.”

Read Article

Category: Members, AI & Machine Economy, Innovation Topics

Previous Post: « “Vibe coding” startup Pythagora enables anyone including noncoders to develop full-stack applications with a series of prompts by unifying both front and back-end development with comprehensive debugging features into a single platform
Next Post: Stablecoins, by enabling instant cross-border payments and costing below $0.01 could allow companies to shift to a financial streaming model with the size of local buffers dramatically reduced and could freeing up trillions in capital »

Copyright © 2025 Finnovate Research · All Rights Reserved · Privacy Policy
Finnovate Research · Knyvett House · Watermans Business Park · The Causeway Staines · TW18 3BA · United Kingdom · About · Contact Us · Tel: +44-20-3070-0188

We use cookies to provide the best website experience for you. If you continue to use this site we will assume that you are happy with it.