Elastic, the Search AI Company, announced new performance and cost-efficiency breakthroughs with two significant enhancements to its vector search. Users now benefit from ACORN, a smart filtering algorithm, in addition to Better Binary Quantization (BBQ) as the default for high-dimensional dense vectors. These capabilities improve both query performance and ranking quality, providing developers with new tools to build scalable, high-performance AI applications while lowering infrastructure costs. ACORN-1 is a new algorithm for filtered k-Nearest Neighbor (kNN) search in Elasticsearch. It tightly integrates filtering into the traversal of the HNSW graph, the core of Elasticsearch’s approximate nearest neighbor search engine. Unlike traditional approaches that apply filters post-search or require pre-indexing, ACORN enables flexible filter definition at query time, even after documents have been ingested. In real-world filtered vector search benchmarks, ACORN delivers up to 5X speedups, improving latency without compromising result accuracy.