Google DeepMind today pulled the curtain back on AlphaEvolve, an artificial-intelligence agent that can invent brand-new computer algorithms — then put them straight to work inside the company’s vast computing empire. AlphaEvolve pairs Google’s Gemini LLMs with an evolutionary approach that tests, refines, and improves algorithms automatically. The system has already been deployed across Google’s data centers, chip designs, and AI training systems — boosting efficiency and solving mathematical problems that have stumped researchers for decades. “AlphaEvolve is a Gemini-powered AI coding agent that is able to make new discoveries in computing and mathematics,” explained Matej Balog, a researcher at Google DeepMind. “It can discover algorithms of remarkable complexity — spanning hundreds of lines of code with sophisticated logical structures that go far beyond simple functions.” One algorithm it discovered has been powering Borg, Google’s massive cluster management system. This scheduling heuristic recovers an average of 0.7% of Google’s worldwide computing resources continuously — a staggering efficiency gain at Google’s scale. The discovery directly targets “stranded resources” — machines that have run out of one resource type (like memory) while still having others (like CPU) available. AlphaEvolve’s solution is especially valuable because it produces simple, human-readable code that engineers can easily interpret, debug, and deploy. Perhaps most impressively, AlphaEvolve improved the very systems that power itself. It optimized a matrix multiplication kernel used to train Gemini models, achieving a 23% speedup for that operation and cutting overall training time by 1%. For AI systems that train on massive computational grids, this efficiency gain translates to substantial energy and resource savings.